Search results

Search for "metallic nanostructures" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • nanoparticle binding [50][51] can be used to bring metallic materials to the surface at unprecedented resolution. Irradiation of such metal–DNA origami nanostructures with ion beams can be used to manufacture metallic nanostructures with sub-nanometer resolution. Finally, the localized DNA origami height
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • , sizes, charges, and modified surfaces which improves the leishmanicidal activity of curc and other control drugs. To date, only three in vivo studies in mice using nanostructured curc have been carried out. These were all based on polymers and metallic nanostructures. Despite the conducted
PDF
Album
Review
Published 04 Jan 2024

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, eco-friendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic
  • nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric β-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • Janis Snikeris Vjaceslavs Gerbreders Andrejs Bulanovs Eriks Sledevskis Daugavpils University, Institute of Life Sciences and Technologies, Parādes Str. 1, Daugavpils, LV-5401, Latvia 10.3762/bjnano.13.87 Abstract Metallic nanostructures are applied in many fields, including photonics and
  • surfaces undergoing irradiation by a focused electron beam. Keywords: atomic force microscopy; electron beam; lithography; nanostructure; silver; sputtering; surface; Introduction Metallic nanostructures have various uses, including in nano-electro-mechanical systems [1], plasmonic biosensors [2], and
PDF
Album
Full Research Paper
Published 22 Sep 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • metallic layer [32], chemical synthesis [33], or nanosphere lithography. Usually, ZnO nanostructures are fabricated first, followed by the decoration with metallic nanostructures or a metallic layer, which is added by physical vapour deposition, including sputtering processes [6][34], ion sputtering, which
  • plasmon resonance of metallic nanostructures [99][100], as well as to charge transfer-induced electron–hole recombination. In the case of metal NP-decorated ZnO NRs [96][101], the UV emission enhancement mechanism is attributed to the recombination between holes in the VB and the electrons in the CB
  • , consequently, to increase the sensitivity of fluorophores, the use of metallic nanostructures was proposed due to their localized surface plasmon resonance [105]. The improvement in the fluorescence detection efficiency can be achieved using fluorophores in the proximity of nanosubstrates, a technique named
PDF
Album
Review
Published 27 May 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • . Potential new materials can be found through the computation of luminescent thin films and plasmonic platforms. Such a hybrid structure can be formed by thin oxide layers doped with rare-earth ions deposited on metal nanostructures [1][2][3]. Plasmonic resonance can be observed in metallic nanostructures
  • were annealed at 550 °C for 15 min in air atmosphere. The formation of metallic nanostructures has been described in detail in our previous works [24][25][26]. On the prepared plasmonic platforms a dielectric buffer layer was deposited. We chose two kinds of layers. The first one, Al2O3, with different
  • TiO2 or TeO2 film are responsible for the emission of light. The intensity of the luminescence can be enhanced by the plasmon resonance from Au nanostructures. The gain is tunable by the thickness of a Al2O3 thin film deposited as a separator between metallic nanostructures and the luminescent layer
PDF
Album
Full Research Paper
Published 22 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • Pt(PF3)4 molecules and the formation of metal clusters. The clusters grow, merge, and interconnect during the irradiation process, forming a network of thread-like metallic nanostructures. The transition region of 1 nm radius outside the beam spot area contains smaller metal clusters with a larger
PDF
Album
Full Research Paper
Published 13 Oct 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron
  • reduction of the iron structures. These results demonstrate that the fabrication of hybrids of metallic nanostructures onto organic 2D materials is an intrinsically complex procedure. The interactions among the metallic deposits, the substrate for the growth of the SAM, and the associated etching/dissolving
  • agent need to be considered and further studied. Keywords: 2D materials; carbon nanomembranes (CNMs); focused electron beam-induced processing; metallic nanostructures; self-assembled monolayers; Introduction Focused electron beam-induced processing (FEBIP) is a powerful maskless “direct-write
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • electrochemically filling the pores with metallic nanostructures such as nanowires or nanotubes, resulting in the production of 2D metallo-semiconductor interpenetrating networks, which are promising for various nanoelectronic, optoelectronic, plasmonic, and nanophotonic applications [4][5][6]. While the growth of
PDF
Album
Full Research Paper
Published 29 Jun 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • , and thus the amplification of the electromagnetic field, was observed in several directions, depending on the direction of illumination. The plasmon resonance also has an effect on the porosity of the metallic nanostructures [26][27], which is why determining the shape and surface quality is extremely
PDF
Album
Full Research Paper
Published 25 Mar 2020

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • precisely the scattering and absorption spectra, of metallic nanostructures can be completely different from their bulk counterparts. Plasmonic nanostructures, in general, are characterized by strong scattering, great photo-stability, high brightness and exceptional localization precision. In addition, SPR
  • increases the local electric fields, and thus optical nonlinear interactions are significantly enhanced in metallic nanostructures [1][2][3]. Nonlinear nanoplasmonics is an emerging field that deals with the nanoscale-confined enhancement of optical fields as well as with the giant nonlinearity provided by
PDF
Album
Full Research Paper
Published 06 Nov 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • efficiently absorb and/or scatter visible and near infrared electromagnetic radiation [1]. The origin of the above phenomena lies in localized surface plasmon resonances (LSPR). LSPRs are light induced oscillations of free electrons in metallic nanostructures. The spectral position of an LSPR depends on the
  • dielectric constant of the metal, surrounding dielectric, shape and size of the nanostructure, and its orientation with respect to the electric component of the electromagnetic field [1][2]. At resonance, the electric field near the surface of metallic nanostructures can be greatly enhanced and localized in
PDF
Album
Full Research Paper
Published 15 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • transfer) effect. In the CT mechanism the charge transfer between the molecules of the analyte and metallic nanostructures is excited, which leads to a resonant increase in the total EF. When the laser energy matches the energy gap between the HOMO and LUMO of molecules, a direct resonant Raman scattering
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • ][14], Majorana states in graphene [15][16][17] and devices with even more exotic non-Abelian excitations, such as parafermions [18][19][20]. CAR was studied experimentally in metallic nanostructures [21][22][23][24] and later in so-called Cooper-pair splitter devices, where two quantum dots (QDs) are
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • . However, the number of works on this subject has increased significantly over the last ten years. This is mainly due to technological needs related to the development of optoelectronics, photonics, electronics and energy conversion systems, fields in which metallic nanostructures found their application
PDF
Album
Full Research Paper
Published 28 Sep 2018

Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna

  • Haitao Chen,
  • Mingkai Liu,
  • Lei Xu and
  • Dragomir N. Neshev

Beilstein J. Nanotechnol. 2018, 9, 780–788, doi:10.3762/bjnano.9.71

Graphical Abstract
  • pseudospin in 2D TMDCs have been developed, including optical [23][24], magnetic [25][26] and electrical [17][27] control. On the other hand, to facilitate device integration, it is preferable that light emission from 2D TMDCs can be controlled at the nanoscale. Recent advances in resonant metallic
  • nanostructures, referred to as plasmonic nanoantenna, have shown great flexibility and capability for manipulation of the radiation of closely placed emitters [1][3][28]. Plasmonic nanoantenna could significantly modify the emission rate, the radiation pattern and the polarization of emission when their
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl
  • , metallic nanostructures produced by FEBID are often contaminated by considerable amounts of carbon, preventing them from fulfilling their desired functionality [1][9]. The main source of this impurity is the precursor itself that is used for the process. FEBID precursors typically contain atoms of the
  • produced from other carbon-containing precursors, the portfolio of compounds suitable for FEBID would widen enormously. This would provide a new perspective to overcome the challenges that FEBID faces regarding the generation of pure metallic nanostructures. However, to reach this goal, a detailed
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • cannot directly elicit plasmonic excitations on metal films in air due to conservation requirements [16][17]. To compensate for the mismatch in momentum between an incident photon and a plasmonic resonance, most studies to date have focused on metallic nanostructures such as nanoparticles, line gratings
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Modelling focused electron beam induced deposition beyond Langmuir adsorption

  • Dédalo Sanz-Hernández and
  • Amalio Fernández-Pacheco

Beilstein J. Nanotechnol. 2017, 8, 2151–2161, doi:10.3762/bjnano.8.214

Graphical Abstract
  • does not require masks or templates, it can achieve sub-10 nm spatial resolution [4][5], and it has the unique ability to fabricate complex three-dimensional nanostructures [6][7][8][9]. Recent key progress on FEBID includes the growth of pure metallic nanostructures by mixing precursor and reactive
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Oct 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • photocatalysis [47]. As graphene is a zero band gap material and susceptible to oxidative reactions, it is often combined with other semiconductors and metallic nanostructures to form composite materials suitable for various applications, including photocatalysis. Furthermore, due to the exceptional electrical
PDF
Album
Review
Published 03 Aug 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • surface metallic nanostructures are often experimentally found by probing the structures under investigation with radiation of various frequencies following a trial-and-error method. A general technique for the tuning of these resonances is highly desirable. In this paper we address the issue of the role
  • usefully employed for the characterization of the optical properties of surface plasmons of random surfaces, given that their tuning is also intrinsically connected to the ripple texture. Conclusion Resonances on surface metallic nanostructures are often found experimentally by probing the structures under
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • phenomenon characterizing aggregates of metallic nanostructures. The electromagnetic energy of visible light can be localized inside nanostructures below the diffraction limit by converting the optical modes into nonradiative surface plasmon resonances. The energy of the confined photons is correlated to the
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016
Other Beilstein-Institut Open Science Activities